skip to main content


Search for: All records

Creators/Authors contains: "Fontaine, Nicolas K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we demonstrate a four-core multicore fiber photonic lantern tip/tilt wavefront sensor. To diagnose the low-order Zernike aberrations, we exploit the ability of the photonic lantern to encode the characteristics of a complex incoming beam at the multimode facet of the sensor to intensity distributions at the multicore fiber output. Here, we provide a comprehensive numerical analysis capable of predicting the performance of fabricated devices and experimentally demonstrate the concept. Two receiver architectures are implemented to discern tip/tilt information by (i) imaging the four-core fiber facet on a 2D detector and (ii) direct power measurement of the single mode outputs using a multicore fiber multiplexer and photodetectors. For both receiver schemes, an angular detection window of∼<#comment/>0.4∘<#comment/>at 1064 nm can be achieved. Our results are expected to further facilitate the development of intensity-based fiber wavefront sensors for adaptive optics systems.

     
    more » « less
  2. null (Ed.)
  3. Non-mode-selective (NMS) multiplexers (muxes) are highly desirable for coherent power combining to produce a high-power beam with a shaped profile (wavefront synthesis) from discrete, phase-locked emitters. We propose a design for a multi-plane light conversion (MPLC)-based NMS mux, which requires only a few phase masks for coherently combining hundreds of discrete input beams into an output beam consisting of hundreds of Hermite–Gaussian (HG) modes. The combination of HG modes as a base can further construct a beam with arbitrary wavefront. The low number of phase masks is attributed to the identical zero-crossing structure of the Hadamard-coded input arrays and of the output HG modes, enabling the practicality of such devices. An NMS mux supporting 256 HG modes is designed using only seven phase masks, and achieves an insertion loss of1.6  dB, mode-dependent loss of 4.7 dB, and average total mode crosstalk of4.4  dB. Additionally, this design, featuring equal power for all input beams, enables phase-only control in coherent power combining, resulting in significant simplifications and fast convergence compared with phase-and-amplitude control.

     
    more » « less
  4.  
    more » « less